On the Configuration-LP for Scheduling on Unrelated Machines
نویسندگان
چکیده
One of the most important open problems in machine scheduling is the problem of scheduling a set of jobs on unrelated machines to minimize the makespan. The best known approximation algorithm for this problem guarantees an approximation factor of 2. It is known to be NP -hard to approximate with a better ratio than 3/2. Closing this gap has been open for over 20 years. The best known approximation factors are achieved by LP-based algorithms. The strongest known linear program formulation for the problem is the configuration-LP. We show that the configuration-LP has an integrality gap of 2 even for the special case of unrelated graph balancing, where each job can be assigned to at most two machines. In particular, our result implies that a large family of cuts does not help to diminish the integrality gap of the canonical assignment-LP. Also, we present cases of the problem which can be approximated with a better factor than 2. They constitute valuable insights for constructing an NP -hardness reduction which improves the known lower bound. Very recently Svensson [22] studied the restricted assignment case, where each job can only be assigned to a given set of machines on which it has the same processing time. He shows that in this setting the configurationLP has an integrality gap of 33/17 ≈ 1.94. Hence, our result imply that the unrelated graph balancing case is significantly more complex than the restricted assignment case. Then we turn to another objective function: maximizing the minimum machine load. For the case that every job can be assigned to at most two machines we give a purely combinatorial 2-approximation which is best possible, unless P = NP . This improves on the computationally costly LP-based (2 + ε)-approximation algorithm by Chakrabarty et al. [7].
منابع مشابه
Solving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کاملSolving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کاملMulti-Objective Unrelated Parallel Machines Scheduling with Sequence-Dependent Setup Times and Precedence Constraints
This paper presents a novel, multi-objective model of a parallel machines scheduling problem that minimizes the number of tardy jobs and total completion time of all jobs. In this model, machines are considered as unrelated parallel units with different speeds. In addition, there is some precedence, relating the jobs with non-identical due dates and their ready times. Sequence-dependent setup t...
متن کاملHeuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملStrong LP Formulations for Scheduling Splittable Jobs on Unrelated Machines
We study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Scheduling
دوره 17 شماره
صفحات -
تاریخ انتشار 2011